Blogs (28) >>
ICFP 2017
Sun 3 - Sat 9 September 2017 Oxford, United Kingdom
Wed 6 Sep 2017 16:40 - 17:03 at L1 - Inference and Analysis Chair(s): Mark Jones

We present an approach to support partiality in type-level computation without compromising expressiveness or type safety. Existing frameworks for type-level computation either require totality or implicitly assume it. For example, type families in Haskell provide a powerful, modular means of defining type-level computation. However, their current design implicitly assumes that type families are total, introducing nonsensical types and significantly complicating the metatheory of type families and their extensions. We propose an alternative design, using qualified types to pair type-level computations with predicates that capture their domains. Our approach naturally captures the intuitive partiality of type families, simplifying their metatheory. As evidence, we present the first complete proof of consistency for a language with closed type families.

Wed 6 Sep

16:40 - 17:50: Research Papers - Inference and Analysis at L1
Chair(s): Mark JonesPortland State University
icfp-2017-papers150470880000016:40 - 17:03
J. Garrett MorrisUniversity of Kansas, USA, Richard A. EisenbergBryn Mawr College, USA
icfp-2017-papers150471020000017:03 - 17:26
Martin AvanziniUniversity of Innsbruck, Austria, Ugo Dal LagoUniversity of Bologna, Italy / Inria, France
icfp-2017-papers150471160000017:26 - 17:50
Justin PombrioBrown University, USA, Shriram KrishnamurthiBrown University, USA, Mitchell WandNortheastern University, USA