Blogs (28) >>
ICFP 2017
Sun 3 - Sat 9 September 2017 Oxford, United Kingdom
Wed 6 Sep 2017 10:52 - 11:15 at L1 - Dependently Typed Programming Chair(s): Dan Licata

Polymorphic type systems such as System F enjoy the parametricity property: polymorphic functions cannot inspect their type argument and will therefore apply the same algorithm to any type they are instantiated on. This idea is formalized mathematically in Reynolds's theory of relational parametricity, which allows the metatheoretical derivation of parametricity theorems about all values of a given type. Although predicative System F embeds into dependent type systems such as Martin-L"of Type Theory (MLTT), parametricity does not carry over as easily. The identity extension lemma, which is crucial if we want to prove theorems involving equality, has only been shown to hold for small types, excluding the universe.

We attribute this to the fact that MLTT uses a single type former $\Pi$ to generalize both the parametric quantifier $\forall$ and the type former $\to$ which is non-parametric in the sense that its elements may use their argument as a value. We equip MLTT with parametric quantifiers $\forall$ and $\exists$ alongside the existing $\Pi$ and $\Sigma$, and provide relation type formers for proving parametricity theorems internally. We show internally the existence of initial algebras and final co-algebras of indexed functors both by Church encoding and, for a large class of functors, by using sized types.

We prove soundness of our type system by enhancing existing iterated reflexive graph (cubical set) models of dependently typed parametricity by distinguishing between edges that express relatedness of objects (bridges) and edges that express equality (paths). The parametric functions are those that map bridges to paths.

We implement an extension to the Agda proof assistant that type-checks proofs in our type system.

Wed 6 Sep
Times are displayed in time zone: (GMT+01:00) Greenwich Mean Time : Belfast change

10:30 - 12:00: Research Papers - Dependently Typed Programming at L1
Chair(s): Dan LicataWesleyan University
icfp-2017-papers10:30 - 10:52
Stephanie WeirichUniversity of Pennsylvania, USA, Antoine VoizardUniversity of Pennsylvania, USA, Pedro Henrique Azevedo de AmorimEcole Polytechnique, n.n. / University of Campinas, Brazil, Richard A. EisenbergBryn Mawr College, USA
icfp-2017-papers10:52 - 11:15
Andreas NuytsKU Leuven, Belgium, Andrea VezzosiChalmers University of Technology, Sweden, Dominique DevrieseKU Leuven, Belgium
icfp-2017-papers11:15 - 11:37
Andreas AbelUniversity of Gothenburg, Sweden, Andrea VezzosiChalmers University of Technology, Sweden, Theo WinterhalterENS Paris-Saclay, France
icfp-2017-papers11:37 - 12:00
Gabriel EbnerVienna University of Technology, Austria, Sebastian UllrichKIT, Germany, Jared RoeschUniversity of Washington, USA, Jeremy AvigadCarnegie Mellon University, USA, Leonardo De MouraMicrosoft Research, n.n.